

sPHENIX Calorimeters in Geant4

EM calorimeter

Inner hadron calorimeter

BaBar coil and cryostat.

Outer hadron calorimeter

(EMCal): $18 X_0 SPACAL$

(inner HCal) : $1 \lambda_0$ SS-Scint. sampling

(BaBar): $1.4 X_0$

(outer HCal): $4 \lambda_0$ SS-Scint. sampling

Implementation in Geant4

- Enabled with new branch 2DSpacal:
 - Not in nightly build by default (currently in evaluation)
 - To use: check out from GitHub:
 - https://github.com/sPHENIX-Collaboration/coresoftware/tree/2DSpacal
 - https://github.com/sPHENIX-Collaboration/macros/tree/2DSpacal
- After many optimization, currently still need ~5min to run the first event due to large number of unique geometry objects. Then ~2 EM shower/min

Towers project towards IP

Stainless steel SS310 Support box

Gap between modules are also implemented

- 300um tolerance outside super modules skins
- ~2mil between SPACAL and SS skin.
- ~2mil between SPACAL modules

2x2 2D tapered SPACAL modules

n Huang <jihuang@bnl.gov>

EMCal Meeting

Within a SPACAL module

- Tungsten + Epoxy material: 12.18 * g / cm3, 96.9% mass with W
- Fiber: φ470um core (Polystyrene) + 15um skin (PMMA)
 - Thanks to the reference model from A. Kiselev (EIC taskforce & EIC RD1)
- Fiber matrix islayout in triangle pattern with a nominal separation of 1mm. Fiber at least 100um away from surface
- Default: 1-D projective in azimuth. New also available for test: full projective module

Particle view (2x1 modules)

Side view (8x1 modules)

On-going works

- I am verifying the 2D projective setup and revise the performance plots
- Eliton Seidel (Baruch College) is verifying the parameters for Geant4 to model showers in SPACAL
- Nils Feege (SBU) is testing machine learning tools (boosted decision tree and support vector machine) on analyzing EMCal + innerHCal data.

Extra Information

Energy distribution, p= 5GeV electron in sPHENIX field

Looks smooth so far (vs eta)

sPHENIX EMCal

- Upsilon electron ID main driving factor
- 2. Direct photon ID
- 3. Heavy flavor electron ID
- 4. Part of jet energy determination

Compile everything together for barrel electron ID

pp/ep electron ID (EMC+HCAL)

Central AA electron ID (EMC Only)

Fast group of Geant4 hit, need to re-evaluate in realistic towering!

1 RHIC AuAu run

100 B MB events

e+ e- decays

 π rejection 90

 $N_{\rm coll}$ scaled

invariant mass (GeV/c2)

centrality 0-10%

-1 < n < 1

Quantitative comparison for EID performance in Geant4 (group hits to simulate for towers)

Electron Efficiency

Central rapidity, $|\eta| < 0.2$ Effectively projective in polar direction

Forward rapidity, $|\eta| = 0.7 - 0.9$ non-projective in polar direction

Fast group of Geant4 hit, need to re-evaluate in realistic towering!

Larger pseudo-rapidity in central AuAu: under study

BaBar

EMCal

z (cm)

- Out of the box: larger $|\eta| \rightarrow$ larger background
 - Longer path length in calorimeter
 - Covers more non-projective towers
- to improve

250

200

150

100

- Better estimate of the underlying background event-by-event (improve x1.5)
- Use (radially) thinner ECal (improve x2)
- Possibilities for projective towers?

AuAu 10%C in B-field

Non-projective Tower

-200

w/ track of $|\eta| = 0.7 - 0.9$

- all events (w/ embedding)
- with EMCal E/p cut (w/ embedding)
- Hijing background (AuAu 10%C in B-field)

On-going R&D on 2D projective SPACAL

Sean Stoll (BNL), Spencer Locks (SBU), Jin Huang (BNL) and others

Two module length

R&D Direction 1: Tapered step screens

R&D Direction 2: Tilting Wireframes

